面向寒区海洋工程的扩展多面体离散元计 算分析程序—DilatedDEM

使用说明

编写人:刘 璐 季顺迎

大连理工大学

2016年4月25日

目录

第-	一部注	分 软件简介	3
	1.1	软件名称	3
	1.2	软件行业	3
	1.3	软件开发组成员	4
第二	二部注	分 使用说明	6
	2.1	前处理	6
		2.1.2 海冰建模	6
		2.1.2 结构建模	7
		2.1.3 程序输入文件	9
	2.2	计算模型	9
		2.2.1 单元元间的接触力模型:	9
		2.2.2 块体冰与流体的相互作用	11
		2.2.3 单元之间接触力判断	12
	2.3	后处理	16
		2.3.1 离散元后处理:	16
		2.3.3 计算结果数值分析:	20

第一部分 软件简介

近年来,随着海洋油气开发逐渐涉及到寒区领域,冰区海洋工程受到了越来越多的关注。 海洋结构在冰区能否安全工作在冰区工程上是首要关心的问题。为了保证冰区海洋结构的安 全性,需要对海洋结构冰荷载及其影响因素进行深入研究。其中在冰荷载激励下产生的强烈 振动是影响平台结构安全和破冰船的使用寿命重要因素,也是导致其累积损伤和疲劳寿命的 关键。以离散元方法模拟海冰与结构物相互作用的研究中得到了广泛应用。本软件考虑海冰 与海洋工程结构的相互作用,采用扩展多面体单元可对碎冰区的海冰动力过程及其与海洋结 构的相互作用进行有效的离散元分析。本软件的海冰模型采用基于 Minkowski sum 方法将球 体单元与多面体单元相叠加构造光滑的扩展多面体单元,并建立不同接触模式下的计算模 型。采用 Voronoi 切割算法生成扩展多面体海冰单元可以有效地模拟碎冰区冰块的离散分布 规律,并对冰块与海洋结构的相互作用进行离散元分析。

本软件的实现需要三大模块: 建模模块,力学计算模块和结果分析模块。建模模块可采 用扩展多面体离散单元构造出不同类型海冰模型,通过三角形单元及锥体单元组合的方式构 造出不同类型的海洋结构。力学计算模块可通过搜索、接触判断、内力迭代等方式获得海冰 运动过程、结构冰荷载等结果。结果分析模块可实现海洋结构与海冰相互作用计算结果的动 态显示,该模块具有旋转、缩放、透视等功能,并将计算结果结果输出为 AVI 格式的视频 文件,还可输出自定义时刻的 bmp、png 等格式的图形文件台结构的冰荷载、位移、振动加 速度等力学信息可通过 office excel 或 origin 软件进行显示。

1.1 软件名称

中文:面向寒区海洋工程的扩展多面体离散元计算分析程序 简称 DilatedDEM

英文: Computational and Analytical software of dilated polyhedron Discrete Element Method for cold and ocean engineering

1.2 软件行业

适用行业:

船体设计、船体操纵性与安全性研究 (如:冰区船舶航行,破冰船破冰过程研究,船体 航线的选择等);海洋结构物冰荷载及冰害评估。

软件用途:

 用于不同类型海冰对船体及海洋结构物作用时的挤压破坏、堆积和撞击荷载的离散元数 值分析和计算结果动态显示;

(2)为冰区船舶以及海洋结构的安全运行和结构设计提供借鉴作用,并建立船舶与海洋结构的灾害评价办法及预警应对系统;

软件功能:

(1) 海冰与海洋结构的离散元建模

海冰建模:采用 Minkowski sum 方法将球体单元与多面体单元相叠加构造光滑的扩展多面体单元,并建立不同接触模式下的计算模型。针对碎冰区冰块的离散分布规律,采用 Voronoi 切割算法生成扩展多面体海冰单元,并对冰块与海洋结构的相互作用进行离散元分析。

结构建模:通过三角形单元及锥体单元组合的方式构造出不同类型的海洋结构(例如自升式海洋平台)和船体结构。海洋结构的参数可在建模过程中添加。

(2) 海冰与海洋结构的离散元数值计算

通过搜索、接触判断、内力迭代等方式获得海冰破坏过程、结构冰荷载等结果。计算过程考 虑了海流的影响。

(3) 模拟结果的显示与分析

DilatedDEM 软件可海冰与海洋结构的作用结构进行三维动态显示。其具有旋转、缩放、透视等功能。可直观的观察冰力等情况,并对局部冰力进行分析。也可对冰力时程、结构振动等结果实时绘制出动态曲线。

软件特点:

- (1) 能够比较准确的模拟寒区海冰与海洋结构的相互作用。
- (2) 输出数据更易于观察分析: 对输出文件的数据进行统计分析更为方便。
- (3) 基于 OpenMP 并行计算的高性能数值算法,大幅提高计算效率。
- (4) 图形操作方便:能够实现旋转、缩放、平移图形及交互式选择绘图。

1.3 软件开发组成员

季顺迎(1972-),男,博士,大连理工大学工业装备结构分析国家重点实验室教授,主要从 事离散介质力学、工程海冰数值模拟和工程地质灾害。

刘 璐(1990-), 男, 博士生, 大连理工大学工程力学系固体力学专业在读博士, 主要从事离

散单元法及高性能计算。

孙珊珊(1983-),女,博士生,大连理工大学工程力学系固体力学专业在读博士,主要从事地 质灾害的离散元数值模拟研究。

第二部分 使用说明

2.1 前处理

2.1.2 海冰建模

基于 Minkowski sum 方法将球体单元与多面体单元相叠加构造光滑的扩展多面体单元, 并建立不同接触模式下的计算模型。采用 Voronoi 切割算法构造具有随机分布和非规则 几何形态的碎冰单元。Voronoi 切割算法首先在计算域内随机生成若干坐标点,并将所 有相邻点连成三角形,再作这些三角形各边的垂直平分线,最终每个点被周围的若干 个垂直平分线包围,如图 2.1.1 所示。采用 Voronoi 切割算法在 50m×50m 的计算域随机生 成 200 个多边形,并对其设定一定的厚度,采用 Minkowski sum 方法对其构造生成相应的扩 展多面体海冰单元,如图 2.1.2 所示。通过上述算法形成离散单元模型。

图2.1.1采用Voronoi切割算法生成的多边形单元

图 2.1.2 碎冰区基于 Voronoi 切割算法生成的冰块

通过上述算法就可以生成海冰的离散元模型保存在在 g-polys.dat 文件,如图 2.1.3

所示为海冰信息文件的格式。

图 2.1.3 海冰信息的文件格式

2.1.2 结构建模

本计算算程序的结构建需要借助其他建模软件(ANSYS, Abaqus,等具有建模功能的软件)来实现。通过建模软件能够很容易方便快速的建立海洋结构模型,利用 office excel 或 origin 等软件对上述生成的海洋结构模型数据进行二次处理,生成结构模型数据 g_struct.dat 文件如图 2.1.4 所示,利用该计算程序结构信息读取模块来读取生成的结构模型数据。

各利	冲结构的数目	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
g_Struct - 记事本		结构体的初理属	
文件(F) 编辑(E) 格式(O) 查	s町(H)		
0 0 1			<u>^</u>
2.000000000000000000000000000000000000	3.0000001192092901000E-01 2.2600000000000001000E+01	7.85000000000000000000000000000000000000	
80.4167245210499570000 -1.50000000000000000000 0.000000000000000	0.0086793924801138456 0.0000000000000000000 0.0000000000000	1.7360648796406133000 0.000000000000000000 0.0000000000	
1.000000000000000000000000000000000000	0.0000000000000000000 1.000000000000000	0.000000000000000000000000000000000000	
$\begin{array}{cccc} 0 & 000000000000000000000000000000$	<pre>b. 0400000000000000000000000000000000000</pre>	-7. 2565492089377441000 6. 2658039400933037000	结构
43.7380371927007160000 45.6604188369700240000 47.5253946163760760000	-10.7459966963417910000 -10.9865285088664160000 -11.1683767620327390000	-5.1413375808334481000 -2.9727913661294343000 -0.7489012243319574900	几何
51. 0541298501975400000 42. 9713393134584290000 47. 8364973342566490000	-11. 3363260192399910000 -11. 3119201872376040000 -11. 3119201872376040000	3. 8696700402165538000 6. 265803940033037000 6. 2658039400933037000	禹性
34.6748287735019430000 36.0573485571980680000 37.4399662437326270000 28.925572009757250000	-11.3250408814235990000 -11.3338503093635410000 -11.3382608282793880000 -11.382608282793880000	-7.2565492089377441000 -5.0026850067584201000 -2.7488679590779226000 -0.0051040555507202720	
40. 2054799859603660000 41. 5883683699718460000 38. 2430449904301780000	-11.33388612420377400000 -11.3338863164851740000 -11.3251019960492340000 -11.0840233861402600000	-0.495104505507202700 1.7585997174541452000 4.0122378770433791000 -7.25654920893777441000	
46. 3251974674235780000	-11.3285971737587320000	3. 9408762478500283000	▼ [

图 2.1.4 结构信息的文件格式

🥘 inp - 记事本	
文件(F) 编辑(E) 格式(O) 查看(V) 帮助(H)	
400 output file number	*
1000 expperiment duration	
0.5 output file interval !dtou	tAni
100 dtoutAni_draw	
10 contact search interval !n	dtsrc
0.2 dtoutInfo	
400 dtoutfile	
100 sampling_frequency(fs)	
4 process_number#nproc	
-9.8 gravity	
U.7 mubed	
U.I mus	
U.I restitution	
bound_type $1-NN12$, $2-5=12$,	3-周期, 4-日田
100.0 waterdepth	
0.50 watervel	
0.0 Windvei	
0.2 drag_force_coef(cdf)	
0.14 arag_noment_coer(can)	
0.1 added_Mass_coel	
2e-2 n strength	
1e-7 t strength	
-2 0 structuely	-
	·

图 2.1.5 程序输入文件数据

2.1.3 程序输入文件

关键输入参数说明: output file number: 输出文件数 expperiment duration: 程序经历总时间 dtoutAni: 输出海冰动画显示数据的时间间隔 dtoutAni_draw: 出海冰数据的时间间隔 ndtsrc: 计算搜索时的时间步长间隔 dtoutInfo: 输出海洋结构的信息的间隔 dtoutfile: 输出海洋结构总共的时间 nproc: 并行计算的所用的线程数目 gravity:重力加速度 mubed: 结构摩擦系数 mus: 摩擦系数 restitution: 恢复系数 bound type: 1-刚性, 2-弹性, 3-周期, 4-自由(边界类型) waterdepth: 水深 watervel: 水的流动速度 windvel: 风级 drag force coef: 拖曳力系数 drag_moment_coef: 拖曳力矩系数 isbonding: 粘结破坏的强度 n_strength: 主应力强度 t_strength: 切应力强度 structvelx: 结构的 x 方向的速度

2.2 计算模型

2.2.1 单元元间的接触力模型:

海冰模型单元是基于 Minkowski sum 方法可构造非规则的扩展多面体单元,并考虑单元 间的不同接触方式,从而发展非线性接触模型的统一表述方式。由于扩展多面体之间的接触 实质是两个规则球形单元之间的相互作用,因此可以借鉴球体单元接触碰撞中的处理方法, 对扩展多面体单元的粘滞作用和切向弹性接触力进行简化计算。海冰块体之间的接触力模型 可以简单地表述为如图 2.2.1 所示。

图 2.2.1 接触力模型

在接触点的法线方向,考虑颗粒间的 Hertz 弹性力和粘滞力。因此接触点法向力可以表示为:

$$F_{\rm n} = k_{\rm n} \delta_{\rm n}^{\kappa} + C_{\rm n} \delta_{\rm n}^{\kappa-1} \dot{\delta}_{\rm n} \tag{1}$$

式中, k_n 为两个接触单元的有效法向接触刚度,其取决于扩展多面体单元的接触模式; δ_n 和 $\dot{\delta}_n$ 分别为单元间的法向重叠量和法向相对速度; C_n 为有效法向阻尼系数。对于线性接触模型,有 $\kappa=1$,而对于非线性接触模型,则 $\kappa=3/2$ 。

与球体单元的法向粘滞力计算方法相似,对扩展多面体单元间的有效法向阻尼系数做相应的简化,得到块体的近似阻尼系数计算公式:

$$C_{\rm n} = \zeta_{\rm n} \sqrt{(m_1 + m_2) \cdot k_{\rm n}} \tag{2}$$

式中,*M*为两个接触单元的有效质量; ζ_n是无量纲法向阻尼系数,其与材料的粘滞性质密切相关。在线性接触模型中,其是回弹系数的函数;而在非线性接触模型中则由材料的粘滞性质确定。

在接触点法向法向上,一般忽略颗粒间的粘滞力,则基于 Mindlin 切向接触和 Mohr-Coulomb 摩擦定律,切向接触力可写为

$$F_{\rm s}^* = k_{\rm s} \delta_{\rm n}^{\kappa - 1} \delta_{\rm s} \tag{3}$$

$$F_{s} = \min(F_{s}^{*}, \operatorname{sign}(F_{s}^{*}) \mu F_{n})$$
(4)

式中, k_s 为有效切向刚度,一般简作 $k_s = r_{sn}k_n$, $r_{sn}=0.5$,0.8 或 1.0; δ_s 是单元间的切向位移; μ 为单元间的摩擦系数。

在扩展多面体单元的非线性接触计算中,两个接触单元的有效弹性模量 *E**和接触点处的有效曲率半径 *R**可写作:

$$\frac{1}{E^*} = \frac{1 - v_1^2}{E_1} + \frac{1 - v_2^2}{E_2}$$
(5)

$$\frac{1}{R^*} = \frac{1}{R_1} + \frac{1}{R_2} \tag{6}$$

式中, *E*₁和 *E*₂为分别两个接触单元体的弹性模量, *v*₁和 *v*₂为相应泊松比, *R*₁和 *R*₂为两个多面体在接触点的曲率半径。

2.2.2 块体冰与流体的相互作用

如图 2.2.2 所示,为碎冰在海流、波浪作用下要受动浮力、拖曳力等动力作用下的状态。 这里 *O* 是冰块的重心,*O*_b是冰块的浮心,浮心是指冰块水面以下部分的形心。*r*_b是重心 *O* 到浮心 *O*_b的向量。这里主要考虑冰块受的重力 G、浮力 *F*_b、浮力矩 *M*_b,以及水流拖曳力 *F*_d和拖曳力矩 *M*_d作用。

图 2.2.2 扩展多面体单元的水动力学模型

浮力矩**M**_b决定了冰块在水面的摇摆以及最终稳定形态,由浮心和块体形心不平衡引起,可写作:

$$\mathbf{M}_{\mathrm{b}} = \mathbf{r}_{\mathrm{b}} \times \mathbf{F}_{\mathrm{b}} \tag{7}$$

拖曳力 Fd和拖曳力矩 Md写作:

$$\mathbf{F}_{d} = -\frac{1}{2} C_{d}^{F} \rho_{w} A_{sub} (\mathbf{v} - \mathbf{v}_{w}) |\mathbf{v} - \mathbf{v}_{w}|$$
(8)

$$\mathbf{M}_{\rm d} = -\frac{1}{2} C_{\rm d}^{\rm M} r_{\rm eff}^3 \rho_{\rm w} A_{\rm sub} \boldsymbol{\omega} \left| \boldsymbol{\omega} \right| \tag{9}$$

式中, ρ_w 为海水密度; A_{sub} 为块体与水的接触面积,即块体在水面以下的表面积; $C_d^F \cap C_d^M$ 为拖曳力系数和拖曳力矩系数;v为冰块速度;v_w为流速;ω为块体的转速; r_{eff} 为块体的有效半径,即所有顶点到质心距离的平均值。

2.2.3 单元之间接触力判断

扩展多面体单元主要由平面、棱边和棱角三部分组成。以上三部分在材料动力过程中 均会发生相互接触,并可分为三类主要接触形式,即:(1)棱角-平面、棱角-棱边和棱角-棱角接触,(2)棱边-棱边、棱边-平面接触,(3)平面-平面接触。这里重点分析棱角-平面、 棱边-棱边和平面-平面接触的判断方法。

(1) 球体与球体、平面、柱面的接触计算

在扩展多面体单元接触模式中,球体与球体、平面的接触计算可基于 Hertz 接触模型。 对于球体与球体接触,如图 2.2.3 (a)所示, *O*₁与 *O*₂是两个球的球心,*O*₁₂是球心之间的距 离矢量, n 是 *O*₁₂的单位向量。球体与球体接触通过计算两个球心距离 *Δ=/O*₁₂/,进而计算两 个球体的接触变形

$$\delta_{\rm n} = \varDelta - R_1 - R_2 \tag{10}$$

由此基于 Hertz 接触理论,球体间的法向弹性接触力为:

$$F_{\rm n}^{\rm e} = \frac{4}{3} E^* \sqrt{R^*} \delta_{\rm n}^{\frac{3}{2}}$$
(11)

球体与平面的接触判断及计算也具有成熟的计算方法,如图 2.2.3 (b)所示。三角形形心为 O_2 , P为球心 O_1 在三角形所在平面的投影。球心与平面的距离 $\Delta = |O_{12} \cdot n|$, n 是平面的单位外法向。按式(10)计算接触变形 δ_n ,如果同时满足 $\delta_n < 0$ 且 P点在三角形内,则球体与平面接触。由平面的几何性质,设 R_1 是球体半径,令平面的曲率半径 $R_2 \rightarrow \infty$,则有 $R^* = R_1$ 。由此,球体与平面的法向弹性力为:

$$F_{\rm n}^{\rm e} = \frac{4}{3} E^* \sqrt{R_{\rm l}} \delta_{\rm n}^{\frac{3}{2}}$$
(12)

(c) 棱角与棱边接触

图 2.2.3 球体与球体、平面和柱面接触

图 2.2.3 (c)是球面与柱面的接触模式,其中 A 和 B 是柱体轴线的两个端点, P 是球心 O 到轴线 AB 上的投影。这里 $\Delta = |OP| = |AO \cdot n|$, n 是球体与柱面的单位接触法向,即向量 OP 的单位向量。由式(10)计算接触变形 δ_n ,如果同时满足 $\delta_n < 0$ 且 AO·BO<0,那么球体与柱面接触。Hertz 接触假设下球面与柱面接触可通过椭圆积分表进行计算。基于 Hertz 接触模型,这里可简作:

$$F_{\rm n}^{\rm e} = \frac{4}{3} E^* (R_{\rm b} R^*)^{\frac{1}{4}} \delta_{\rm n}^{\frac{3}{2}}$$
(13)

式中, R_b为球体半径。

(2) 柱面与柱面、平面的接触计算

柱面与柱面的接触可以分为两种情况:平行接触和交叉接触。图 2.2.4 所示为两柱面交 叉接触的情况,其接触力可采用 Hertz 接触模型计算,即:

$$F_{\rm n}^{\rm e} = \frac{4}{3} E^* \sqrt{\widetilde{R}} \delta_{\rm n}^{\frac{3}{2}}$$
(14)

式中, \tilde{R} 是等效高斯曲率半径, $\tilde{R} = \sqrt{R'_1 R'_2}$ 。 $R'_1 和 R'_2$ 为两个接触面的主曲率半径, 可按如下方法计算。

设 *xOy* 平面为两个柱面接触时与接触法向垂直的平面,*O* 点为接触点,θ为两个柱面轴 线的夹角,且 0<θ≤90°。柱面 1 与 *xOy* 平面的距离为: $d_1 = x^2/2R_1$,柱面 2 与 *xOy* 平面的 距离为: $d_2 = (x\cos\theta - y\sin\theta)^2/2R_2$,则这两个柱面之间的距离为:

$$d = d_1 + d_2 = ax^2 + 2bxy + cy^2$$
(15)

这里 $a=1/2R_1+\cos^2\theta/2R_2$, $b=-\sin\theta\cos\theta/2R_2$, $c=\sin^2\theta/2R_2$ 。该多项式的二次型矩阵 M 为:

$$\mathbf{M} = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$$
(16)

(a) 棱边与棱边交叉接触 (b) 棱边与棱边平行接触

(c) 棱边与平面接触

图 2.2.4 柱面与柱面和平面接触

设 $T = tr(\mathbf{M}) = a + c$, $D = det(\mathbf{M}) = ac - b^2$ 。那么矩阵 **M** 的本征方程 det($\mathbf{M} - \lambda \mathbf{E}$) = 0 的两个解为:

$$\lambda_1, \lambda_2 = \frac{T \pm \sqrt{T^2 - 4D}}{2} \tag{17}$$

接触点上对应的两个单元表面的主曲率半径 R'_1 和 R'_2 则分别是矩阵 **M** 的两个本征值 λ_1 和 λ_2 的倒数,即

$$R_1', R_2' = \frac{2}{T \pm \sqrt{T^2 - 4D}} \tag{18}$$

对于两个圆柱的平行接触方式,如图 2.2.4 (b)所示, A_1B_1 和 A_2B_2 是两圆柱的中轴线, θ 是 A_1A_2 与 A_1B_1 的夹角, CD 是 A_2B_2 在 A_1B_1 上的投影。若两个圆柱平行,即 cos< A_1B_1 , A_2B_2 >=1,则柱面与平面的距离 $\Delta = |CA_2| = |A_1A_2| \cdot \sin\theta$ 。按照式(10)计算接触变形 δ_n ,若 δ_n <0, 则判断 A_2B_2 在 A_1B_1 所在直线上的投影 CD 是否与 A_1B_1 重叠,并在有重叠条件下计算接触长 度 L。

对于平行接触的情况,依据 Hertz 接触理论人们发展了多个接触模型,本文选用如下简 化模型:

$$F_{\rm n}^{\rm e} = \frac{4}{3} L E^* \sqrt{R^*} \delta_{\rm n}^{\frac{3}{2}}$$
(19)

式中, L 是接触长度。

对于柱面和平面的接触方式,如图 2.2.4 (c)所示,*O* 是三角面的形心,*A* 和 *B* 是圆柱轴 线的两个端点,*P*_A和 *P*_B是 *A* 和 *B* 在平面上投影,*CD* 是 *P*_A*P*_B与三角面的重合部分,即接 触长度。若柱面与平面平行,即 cos<*n*,*AB*>=0,则计算柱面与平面的距离 $\Delta = |AP_A| = |OA \cdot n|$, 按照式 (10) 计算接触变形 δ_n 。如果 $\delta_n < 0$,则再判断 *AB* 在三角面所在平面的投影 *P*_A*P*_B 是否与三角面重叠,有重叠则计算接触长度 *L*=/*CD*/。类似的,设 *R*₁是圆柱半径,可令 *R*₂→∞, 则有 *R*^{*}=*R*₁,由此圆柱和平面的法向弹性力可写作:

$$F_{\rm n}^{\rm e} = \frac{4}{3} L E^* \sqrt{R_{\rm i}} \delta_{\rm n}^{\frac{3}{2}}$$
(20)

(21)

(3) 平面-平面的接触计算

如图 2.2.5 (a)所示,对于扩展多面体单元接触中的平面-平面接触模型,可考虑表面力作 用下弹性半空间体的变形,如图 2.2.5 (b)所示。假设刚性圆柱在弹性半空间体上的压力分布 为 *p*(*r*),则接触力为:

$$u_z = \frac{\pi p_0 a}{E^*} \tag{22}$$

式中, a 为接触区域的半径。由此接触面上的法向应力为:

$$p = p_0 \left(1 - \frac{r^2}{a^2}\right)^{-\frac{1}{2}}$$
(23)

这样,作用在该区域上的接触力可写作:

$$F_{\rm n}^{\rm e} = 2\pi p_0 a^2 = 2aE^* \cdot u_z \tag{24}$$

令□δ_n=u_z,则上式可写作适用于非圆截面的形式,即:

$$F_{\rm n}^{\rm e} = 2E^* \beta \sqrt{\frac{A}{\pi}} \cdot \delta_{\rm n} \tag{25}$$

这里 β 可根据不同的接触面形状进行取值。对于扩展多面体单元面-面接触中的多边形接触面,可取 β =1.02。

2.3 后处理

2.3.1 离散元后处理:

采用 IceDEM 软件可以对块体海冰运动进行三维动态显示。在主界面中,单击 Postprocess 下滑菜单中的 Open 按钮,将弹出如下对话框。后处理可以读取计算得到的三 维动画数据 ANIMATION_3D.DAT,数据格式如图 2.3.2. 具体输出格式要求,可以在主界面 的 Help(H) 选项中查看。

<u>्र</u> ्, ग्रम								
○○○ ↓ 软件著作权 → Oceaneering_20160329 → Oceaneering → · · · · · · · · · · · · · · · · · ·								
组织 ▼ 新建文件夹				:≡ ▼ 🔳	0			
☆ 收藏夹	^{名称} 三维动画	修改日期	类型	大小				
🝌 下载	🎍 inp 数据	2016/4/4 18:30	文件夹					
	us4	2016/4/4 18:30	文件夹					
3 最近访问的位置	Animation_3D	2016/4/5 13:08	DAT 文件	1,742,865				
戸 库 ■	g_MooringChain	2016/4/2 16:43	DAT 文件	1 KB				
🙆 爱奇艺影视库	g_Polys	2016/4/4 11:05	DAT 文件	6,512 KB				
🛃 视频	g_struct	2016/4/4 12:00	DAT 文件 DAT 文件	148 KB 47 KB				
国際片	O_MooringForce	2016/4/5 13:08	DAT 文件	4,539 KB				
	O_PolyVelocity	2016/4/5 13:08	DAT 文件	1,462 KB				
	O_StructForce	2016/4/5 13:08	DAT 文件	3,124 KB				
@' ⊟⊼	Structure0	2016/4/5 13:08	DAT 文件 DAT 文件	40,252 KB 2 KB				
▶ 计算机	Structure1	2015/8/10 9:48	DAT 文件	1 KB				
🏭 本地磁盘 (C:) ,	StructureForce	2016/4/2 13:43	DAT 文件	1,327 KB				
⇒個	客(N):		▼ dat file(*.da	t)	,			
				-7				
			打开(O)	▼				

图 2.3.1 三维动画数据文件

	,										
Animation aD -	日本人	件识别符	0.000	-	C-B-rega	NUMBER OF STREET	Manual I	-			- C - X
文件(F) 编辑(E)	ि式(O) ₫	ē看(V) 帮助(H)									
3DA: -468.750 -600.000 0.8345870	168.750 25.000 E-04	-468.750 468.750 -82.500 82.500 0.000 0.000	-468.750 -100.000 0.000	468.750 20.000		/		央体与结	「均信息		
0 1 2 3 4 4 5 1 6 1 7 7 7 7 9 10 1 12 14 15 14 16 16 16 16 16 16 10 1 10 1 10 10 10 10 10 10	plate plate plate plate plate plate plate plate plate plate plate plate plate plate plate plate plate plate plate plate	$\begin{array}{cccc} 0 & 50756 \\ -497, 510 \\ -497, 510 \\ -497, 335 \\ -497, 335 \\ -499, 508 \\ -499, 508 \\ -499, 326 \\ -490, 326 \\ -400, 36 \\ -400, 36 \\ -400, 371 \\ -400, 311 \\ -401, 318 \\ \end{array}$	$\begin{array}{c} 1522\\ -0.363\\ -0.363\\ -0.363\\ -0.363\\ -0.363\\ -0.363\\ -0.363\\ -0.363\\ -0.363\\ -0.363\\ -0.363\\ -0.363\\ -0.363\\ -0.363\\ -0.363\\ -0.363\\ -0.352\\ -0.352\\ -0.352\\ -0.352\\ -0.352\\ -0.352\\ -0.352\\ -0.352\\ -0.352\\ -0.352\\ -$	$\begin{array}{c} 2\\ -8,404\\ -9,568\\ -13,019\\ -13,013\\ -13,033\\ -13,033\\ -13,033\\ -13,033\\ -8,687\\ -8,687\\ -8,687\\ -8,687\\ -8,687\\ -13,033\\ -13,033\\ -13,033\\ -13,033\\ -13,033\\ -14,642\\ -44,642\\ -44,642\\ -44,642\\ -45,044\\ -45,044\\ -45,044\\ -45,033\\ -48,332\\ -48,332\\ -48,332\\ -48,332\\ -48,332\\ -48,332\\ -48,332\\ -48,332\\ $	-497, 510 -499, 826 -497, 335 -497, 510 -499, 608 -493, 826 -499, 826 -497, 335 -497, 335 -497, 335 -497, 497, 497 -497, 497 -497 -497 -497 -497 -497 -497 -497 -	$\begin{array}{c} 0.\ 037\\ 0.\ 037\\ 0.\ 037\\ 0.\ 037\\ 0.\ 037\\ 0.\ 037\\ 0.\ 037\\ 0.\ 037\\ 0.\ 037\\ -0.\ 363\\ -0.\ 363\\ -0.\ 363\\ 0.\ 037\\ 0.\ 037\\ 0.\ 037\\ 0.\ 047\\ 0.\ 047\\ 0.\ 047\\ 0.\ 047\\ 0.\ 047\\ 0.\ 047\\ 0.\ 047\\ \end{array}$	$\begin{array}{c} -8,\ 404\\ -8,\ 687\\ -9,\ 368\\ -8,\ 009\\ -13,\ 009\\ -13,\ 003\\ -13,\ 00,\ 003\\ -13,\ 003\\ -13$	-499.826 -499.826 -497.510 -497.510 -497.335 -499.608 -499.826 -499.826 -499.826 -499.826 -499.826 -499.826 -499.826 -499.608 -497.510 -497.335 -497.610 -497.610 -497.481 -400.986 -400.871	$\begin{array}{c} 0.\ 037\\ -0.\ 363\\ 0.\ 037\\ -0.\ 363\\ -0.\ 363\\ -0.\ 363\\ -0.\ 363\\ -0.\ 363\\ -0.\ 363\\ -0.\ 363\\ -0.\ 363\\ -0.\ 363\\ 0.\ 037\\ -0.\ 353\\ 0.\ 047\\ -0.\ 047\\ -0.\ 053\\ -0.\ 047\\ -0.\ 053\\ -0.\ 047\\ -0.\ 0.\ 047\\ -0.\ 0.\ 047\\ -0.\ 0.\ 047\\ -0.\ 0.\ 047\\ -0.\ 0.\ 047\\ -0.\ 0.\ 047\\ -0.\ 0.\ 047\\ -0.\ 0.\ 047\\ -0.\ 0.\ 047\\ -0.\ 0.\ 047\\ -0.\ 0.\ 047\\ -0.\ 0.\ 047\\ -0.\ 0.\ 0.\ 047\\ -0.\ 0.\ 0.\ 047\\ -0.\ 0.\ 0.\ 047\\ -0.\ 0.\ 0.\ 0.\ 047\\ -0.\ 0.\ 0.\ 0.\ 0.\ 047\\ -0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ $	$\begin{array}{c} -8,687\\ -8,607\\ -8,404\\ -9,368\\ -3,368\\ -1,3,019\\ -1,3,019\\ -1,3,019\\ -1,3,019\\ -1,3,019\\ -9,368\\ -1,3,019\\ -8,404\\ -1,3,019\\ -45,703\\ -45,703\\ -45,703\\ -45,703\\ -45,044\\ -45,044\\ -45,044\\ -45,044\\ -45,044\\ \end{array}$	$\begin{array}{c} -499, 826\\ -497, 510\\ -497, 510\\ -497, 335\\ -499, 608\\ -499, 608\\ -499, 826\\ -499, 826\\ -499, 826\\ -499, 826\\ -499, 826\\ -499, 826\\ -499, 826\\ -499, 826\\ -499, 826\\ -499, 826\\ -499, 826\\ -499, 826\\ -499, 826\\ -499, 826\\ -499, 826\\ -499, 826\\ -499, 826\\ -499, 826\\ -499, 826\\ -490, 826\\ -400, 871\\ \end{array}$
24 1 25 1	plate plate	-401.918 -404.195	-0.353 -0.353	-48.937 -48.489	-400.871 -404.195	$0.047 \\ 0.047$	-45.333 -48.489	-400.871 -401.918	-0.353 0.047	-45.333 -48.937	-400.871 -401.919 -
					m						▶

图 2.3.2 三维动画文件格式

单击选择输入文件,并单击 打开 ¹按钮,软件将对输入文件进行解析。如果输入文件 比较大,则用户需要耐心等一会。输入文件解析完成后界面如图 2.3.3 所示。界面分为三部 分,菜单区,控制区及显示区域。

图 2.3.3 后处理工作界面

菜单区 ▶ ■ ▲ ■ ▶ ■ ● ■ 的按键功能分别对应:动画播放,动画复位,动画快退,动画暂停,动画快进,保存当前画面图片 (jpg, bmp 格式),保存动画视频 (avi 格式),动画自动旋转。

Color 区: Background _____ 可调整整个画面的背景颜色,单击 Background 右边的颜色块将弹出【颜色】对话框,用户可自行选择合适的颜色,若是颜色不合用,可单击 规定自定义颜色 @) >> 按钮,将弹出如图 2.3.4 所示的【颜色】对话框,用户可以鼠 标单击调色板区域,添加自定义颜色。一个实际应用情况如图 2.3.5 所示。

颜色	· · · · · · · · · · · · · · · · · · ·	
基本颜色 (b):	基本颜色(B):	
	自定义颜色 (C):	
規定自定义颜色 (D) >> 确定 取消	規定自定义颜色 (0) >> 颜色 纯色 (0) 高度 (L): [240 蓝 (0): [255 确定 取消 添加到自定义颜色 (A)	

(a)颜色选择对话窗口

(b) 自定义颜色对话窗口

图 2.3.4 背景颜色选择项

图 2.3.5 不同背景下的显示效果

Boundary 区:可以调整结构,块体,边界水面的颜色,上面选项用于调整每个版块的的颜色下边的用于调整颜色深度透及明度。不同设置的效果如图 2.3.6。

图 2.3.6 不同结构颜色选项下的显示效果

控制区各部分功能如图 2.3.7 标注所示

图 2.3.7 控制区标注

对于颗粒颜色所代表的物理意义, Speed 表示速度, Diameter 表示颗粒直径, Constant 将颗粒统一绘制成同一颜色, part 显示用户自定义物理量, 在输出文件颗粒信息最后一列给出。颗粒颜色代表数值的大小, 具体趋势, 如图 2.3.8 最下方颜色渐变条所示, 颜色越偏向 红色, 所代表的数值越大。不同选项的效果如下图。

2.3.3 计算结果数值分析:

最后通过 office excel 或 origin 软件对平台结构的冰荷载、位移、振动加速度等力学信息进行绘制并进一步分析。考虑到动力输出结果的随机性,这里采用 origin 或 matlab 中的 滤波功能使结果更具规律性。下列为海冰与圆柱体桩的具体的输出结果如下图所示。

图 2.3.3 冰块阻塞时的速度分布